China Best Sales OEM Mc866747 8X39 CZPT Wheel Pinion Gear worm and wheel gear

Product Description


OEM MC866747 8X39 CHINAMFG wheel pinion gear

Our  gear can be standard as per European or American standard or special as per your drawing or sample.

Features:

♦    Material: carbon steel such as C45, 20CrMnTi, 40Cr, 42CrMo or stainless steel or copper or nylon and so on

♦    Heat Treatment: Hardening and Tempering, High Frequency Quenching, Carburizing Quenching and so on.

♦    Standard: European or American standard

♦    Item: M0.5,M1 .M1,5,M1,7,M2,M2.5,M3,M4,M5,M6 and so on

♦    Export Area: Europe and America

♦    OEM service: make based on your special sample or drawing and meet your need for high precision on teeth of gear

Good quality with reasonable price, timely delivery and great customer service.

We can also supply spur gear,special gears, worm gear,worm wheel,gear spiral bevel gears, large spur gears,gears wheel,straight bevel gears, helical bevel gears,spur gears,planetary gears, passive gears, milled spur gears, gear for valve,
truck gear, transmission spur gear,spur bearing gear, gear pinions,galvanized gear ect available. Standard or special gears produced by CNC machine

We produce gear as per your special samples or drawing and we also produce as per standard such as Metric standard, British standards, AGMA standards by CNC machine

Material can be C45, 40Cr, 20CrMnTi, 42CrMo, copper, stainless steel and so on as per your requests

There is high precision available as your special request

Our gear is exported to Europe and America in big quantity and so we are sure that we can help you win great success!

Crown wheel pinion, CHINAMFG wheel and pinion, CHINAMFG wheel & pinion, CHINAMFG wheel gears, CHINAMFG pinion, pinion and CHINAMFG wheel, CHINAMFG pinion suppliers, CHINAMFG Wheel Pinion Gear, China CHINAMFG Wheel Pinion Gear, pinion and CHINAMFG wheel
We have already exported our products for more than 20 years, as a professional supplier, we have more than 2-A 6*43
MITSUBISHI 120S L3
MITSUBISHI PS120 COUTER SHAFT ME-603214
MITSUBISHI COUTER SHAFT ME-604431
ME-60571
MC866747 8X39
MC805654
MITSUBISHI 8DC9 FRONT MC8 0571 4 6X40 6D22/FUSO
MITSUBISHI 8DC9 REAR MC8 0571 0 6X40 6D22/FUSO
MITSUBISHI 8DC9 FV313FR 12571-55040 6X41
MITSUBISHI 8DC9 FV313RR 12571-9-0 7X43
1-4121 0571 -0 7X43
ISUZU CHINAMFG 8-97047-092-1 6X41
ISUZU NPR 8-97571-310 7X43
8-97571-741 7X41
8-97571-639 6X39
ISUZU FTR 47210-2750 6X41
47210-2760 6X39
7X43
Nissan FRONT CK12 38110-95715(38110-90404) 6X41 CWA 53/PE6/RD8
Nissan REAR CK12 38110-90116(38110-90369) 6X41 CK12/PE6/RD8
38110-90115 6*37 CPB12
38110-90113/38110-9571 7*36 PD6
38110-91003/31th tooth 6*41
38110-9571 6X41 CWB520NEW
38110-90502 6X41 CWB520NEW
38110-9571 5X37
38110-90501 5X37
38110-90707 7X39 RF8/DJ502
38110-90708 7X39 RF8/DJ502
38110-9571 6X39
38110-90503 6X39
38110-90006 7X39
38110-90007 7X39
HINO CHINAMFG Wheel Pinion 41201-1382 7X45 FM226/SG
41201-1163 7X38 EM100
41203-1180 7X43 AKBUS
41201-1080 7X46
41201-1101 6X41 EF750/SG NUT BOLT
41201-4110 7X41
41201-3790 7X41
41201-4650 7X41
41201-4850 7X41
41201-2991 7X41
HINO CHINAMFG Wheel and Pinion 41203-1811 7X44 H07C NEW
41203-2250 7X41 H07C/FL
41201-4571(41201-3070) 7X45 J08C 10-WHL
41201-4040 7X45
41211-2960 7X43

 


Company Information

HangZhou CHINAMFG Industry Co., Ltd. is a specialized supplier of a full range of chains, sprockets, gears, gear racks, v belt pulley, timing pulley, V-belts, couplings, machined parts and so on.

Due to our CHINAMFG in offering best service to our clients, understanding of your needs and overriding sense of responsibility toward filling ordering requirements, we have obtained the trust of buyers worldwide. Having accumulated precious experience in cooperating with foreign customers, our products are selling well in the American, European, South American and Asian markets.Our products are manufactured by modern computerized machinery and equipment. Meanwhile, our products are manufactured according to high quality standards, and complying with the international advanced standard criteria.

With many years’ experience in this line, we will be trusted by our advantages in competitive price, one-time delivery, prompt response, on-hand engineering support and good after-sales services.

Additionally, all our production procedures are in compliance with ISO9001 standards. We also can design and make non-standard products to meet customers’ special requirements. Quality and credit are the bases that make a corporation alive. We will provide best services and high quality products with all sincerity. If you need any information or samples, please contact us and you will have our soon reply.

 

Type: Steering Gears/Shaft
Material: Steel
Certification: ISO, AISI, DIN, Ce
Automatic: Automatic
Standard: Standard
Condition: New
Customization:
Available

|

Customized Request

crown gear

What is the role of a crown gear in power transmission?

A crown gear plays a crucial role in power transmission within a mechanical system. Let’s explore the role of a crown gear in power transmission:

  • Power Distribution:

Crown gears are used to transfer power between two intersecting shafts. When a crown gear meshes with other gears in a system, it enables the transmission of rotational energy from the input shaft to the output shaft. This power distribution mechanism allows the system to efficiently transfer and control the flow of mechanical energy.

  • Torque Transmission:

One of the primary functions of a crown gear is to transmit torque. Torque refers to the rotational force applied to an object. When the input shaft rotates, the crown gear engages with other gears, and through the interaction of their teeth, torque is transmitted from the input shaft to the output shaft. Crown gears are designed to handle high torque loads, ensuring effective power transmission within the system.

  • Speed Reduction or Increase:

In addition to power distribution and torque transmission, crown gears also contribute to speed reduction or increase in a system. By meshing with gears of different sizes or gear ratios, the rotational speed of the output shaft can be adjusted relative to the input shaft. When the crown gear engages with a smaller gear, it results in speed reduction, providing higher torque output. Conversely, when it meshes with a larger gear, it leads to speed increase, sacrificing torque for higher rotational speed.

  • Directional Change:

Crown gears can also facilitate a change in rotational direction within a power transmission system. By meshing with other gears, they can redirect the rotational motion from one shaft to another shaft oriented at a different angle. This ability to change the direction of power transmission allows for the efficient transfer of rotational energy in systems with complex configurations.

  • Efficiency and Load Distribution:

Crown gears are designed to optimize power transmission efficiency. Their tooth profile and engagement properties minimize energy losses due to friction, ensuring efficient transfer of mechanical energy. Additionally, crown gears distribute the load evenly across their teeth, reducing stress concentrations and promoting longevity and reliability in the system. By efficiently transmitting power and evenly distributing loads, crown gears contribute to the overall performance and durability of the power transmission system.

In summary, the role of a crown gear in power transmission involves power distribution, torque transmission, speed adjustment, directional change, and the promotion of efficiency and load distribution. Crown gears are essential components that enable the controlled transfer of mechanical energy, allowing for effective operation and performance of various mechanical systems.

crown gear

What are the challenges in designing and manufacturing crown gears?

The design and manufacturing of crown gears come with certain challenges that engineers and manufacturers need to address. Let’s explore the challenges involved in designing and manufacturing crown gears:

  • Complex Tooth Geometry:

Crown gears have a complex tooth geometry compared to other gear types. The curved shape of the teeth requires precise calculations and design considerations to ensure proper meshing and optimal performance. Designing and modeling these intricate tooth profiles can be challenging, requiring advanced software tools and expertise.

  • Manufacturing Tolerances:

Manufacturing crown gears with tight tolerances is crucial to achieve smooth and accurate meshing with other gears. The curved tooth profile and perpendicular orientation require precise machining or gear cutting processes. Maintaining the necessary tolerances throughout the manufacturing process can be challenging and may require specialized equipment or techniques.

  • Noise and Vibration:

Due to the complex tooth geometry and meshing characteristics, crown gears can generate noise and vibration during operation. Ensuring quiet and vibration-free performance is essential, especially in applications where noise reduction is critical. Designing and manufacturing crown gears with appropriate tooth profiles, surface finishes, and gear materials can help mitigate noise and vibration issues.

  • Stress Concentrations:

Crown gears are susceptible to stress concentrations at the tooth root and fillet areas. The high contact stresses occurring during meshing can lead to premature tooth failure or wear. Designing proper fillet radii, optimizing tooth profiles, and selecting suitable materials and heat treatments are important considerations to minimize stress concentrations and enhance gear strength and durability.

  • Heat Treatment and Surface Hardening:

Achieving the desired surface hardness and wear resistance of crown gears can be challenging. Heat treatment processes, such as carburizing or induction hardening, need to be carefully controlled to ensure uniform hardness distribution and avoid distortion. Balancing the gear’s core toughness with the surface hardness is critical to maintain gear integrity and performance.

  • Lubrication and Maintenance:

Crown gears require proper lubrication to reduce friction, wear, and heat generation during operation. Designing gear systems with adequate lubrication mechanisms, such as oil baths or forced lubrication, is crucial. Additionally, considering maintenance requirements, such as accessibility for lubrication and gear inspection, is important to ensure the long-term performance and reliability of crown gears.

In summary, designing and manufacturing crown gears present challenges related to complex tooth geometry, manufacturing tolerances, noise and vibration, stress concentrations, heat treatment, surface hardening, lubrication, and maintenance. Overcoming these challenges requires careful design considerations, precise manufacturing processes, and suitable material selection to ensure the optimal performance, durability, and reliability of crown gears in gear systems.

crown gear

What is the purpose of using a crown gear in machinery?

A crown gear, also known as a contrate gear or a contrate wheel, serves several important purposes in machinery. Let’s explore the key purposes and advantages of using a crown gear:

  • Directional Change:

One of the primary purposes of a crown gear is to change the direction of rotation in a mechanical system. By meshing a crown gear with other gears, the rotational motion can be redirected by 90 degrees. This directional change capability is particularly useful in applications where a change in motion direction is required, such as conveyors, cranes, and other machinery.

  • Force Distribution:

Crown gears are also used to distribute forces and torques in machinery. By meshing a crown gear with other gears, the load can be spread across a larger contact area. This distribution of forces helps reduce stress and wear on individual gear teeth, promoting smoother operation and improved durability of the gear system.

  • Steering Mechanisms:

Crown gears find significant application in steering mechanisms, especially in automotive systems. They are commonly used in rack and pinion setups, where the crown gear meshes with a rack (a linear toothed component) to convert rotational motion into linear motion. This arrangement enables precise control and smooth movement in steering systems, ensuring reliable and accurate vehicle maneuvering.

  • Motion Control Systems:

Crown gears play a crucial role in motion control systems, particularly in automation and robotics. They allow for changes in motion direction, force distribution, and precise control of movement. By utilizing crown gears, robotic arms, gantry systems, and other automated equipment can achieve complex and accurate motions essential for various industrial processes.

  • Compatibility with Different Gear Types:

Crown gears have the advantage of being compatible with gears that have parallel axes or bevel gears with intersecting axes. This versatility allows them to mesh smoothly with different gear configurations, enabling torque and rotational motion transfer between various components in a machinery setup.

  • Application-Specific Uses:

The specific purposes of using a crown gear in machinery ultimately depend on the application requirements. Crown gears can be customized and integrated into machinery to fulfill specific needs, such as changing motion direction, distributing forces, enabling precise control, and ensuring compatibility with other gear systems.

In summary, the purpose of using a crown gear in machinery includes directional change, force distribution, steering mechanisms, motion control systems, compatibility with different gear types, and application-specific uses. Crown gears offer unique advantages that contribute to the smooth operation, durability, and efficiency of machinery in various industries.

China Best Sales OEM Mc866747 8X39 CZPT Wheel Pinion Gear worm and wheel gearChina Best Sales OEM Mc866747 8X39 CZPT Wheel Pinion Gear worm and wheel gear
editor by CX 2023-11-14

Tags

Recent Posts