China factory 38110-90707 7/39 CZPT Wheel and Pinion Gear for CZPT Ud Cw450 gear box

Product Description

Product Description

Car Fitment Nissan UD CW450
OE No. 38110-90707
Speed Ratio 7/39
Type Differential Gear
Material 20CrMnTi/ 8620
Hardness HRC58-62
Treatment Carburizing,Hardening,
tempering,high frequency treatment,black coating,zincing,nickelage

 

Company Profile

 

HangZhou CHINAMFG Machinery is a professional manufacture of spiral bevel gear. The company has CNC milling machine, the GLEASON milling machine, rolling inspection machine, gear measuring center, a full set of metallographic analysis, inspection equipment and other related advanced equipment.
Our company owns gear measuring center equipped with advanced testing machines such as contourgraph, universal measuring microscope and full set netlaaographic analysis detector. According to various technical requirements and through procedures of sampling, special inspection and re-examination, multi-indexes of gears like observation, measurement and tracking can be completed.
With our high quality products, high credibility and trusty cooperation, aiming to be a highly specialized gear manufacturer of high level and all-directional service,we are looking CHINAMFG to your  business negotiation and our promising cooperation.

 

FAQ

Q1: Are your products standard?
A: Our model is standard, if you have specific demand, pls tell us. 
Q2: What is you main categories?
A: CHINAMFG truck parts, CHINAMFG truck parts, Hino truck parts, CHINAMFG truck parts. 
Q3: If we don’t find what we want on your website, what should we do? 
A: You can email us the descriptions and pictures of the products you need, we will check whether we have them. 
B: We develop new items every month, and some of them have not been uploaded to website in time. Or you can send us sample by express, we will develop this item for bulk purchasing. 
Q4: What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance
Q5:Do you test all your goods before delivery?
Yes, we have 100% test before delivery

Application: Motor, Electric Cars, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Curved Gear
Material: Cast Steel
Customization:
Available

|

Customized Request

crown gear

What is the role of a crown gear in power transmission?

A crown gear plays a crucial role in power transmission within a mechanical system. Let’s explore the role of a crown gear in power transmission:

  • Power Distribution:

Crown gears are used to transfer power between two intersecting shafts. When a crown gear meshes with other gears in a system, it enables the transmission of rotational energy from the input shaft to the output shaft. This power distribution mechanism allows the system to efficiently transfer and control the flow of mechanical energy.

  • Torque Transmission:

One of the primary functions of a crown gear is to transmit torque. Torque refers to the rotational force applied to an object. When the input shaft rotates, the crown gear engages with other gears, and through the interaction of their teeth, torque is transmitted from the input shaft to the output shaft. Crown gears are designed to handle high torque loads, ensuring effective power transmission within the system.

  • Speed Reduction or Increase:

In addition to power distribution and torque transmission, crown gears also contribute to speed reduction or increase in a system. By meshing with gears of different sizes or gear ratios, the rotational speed of the output shaft can be adjusted relative to the input shaft. When the crown gear engages with a smaller gear, it results in speed reduction, providing higher torque output. Conversely, when it meshes with a larger gear, it leads to speed increase, sacrificing torque for higher rotational speed.

  • Directional Change:

Crown gears can also facilitate a change in rotational direction within a power transmission system. By meshing with other gears, they can redirect the rotational motion from one shaft to another shaft oriented at a different angle. This ability to change the direction of power transmission allows for the efficient transfer of rotational energy in systems with complex configurations.

  • Efficiency and Load Distribution:

Crown gears are designed to optimize power transmission efficiency. Their tooth profile and engagement properties minimize energy losses due to friction, ensuring efficient transfer of mechanical energy. Additionally, crown gears distribute the load evenly across their teeth, reducing stress concentrations and promoting longevity and reliability in the system. By efficiently transmitting power and evenly distributing loads, crown gears contribute to the overall performance and durability of the power transmission system.

In summary, the role of a crown gear in power transmission involves power distribution, torque transmission, speed adjustment, directional change, and the promotion of efficiency and load distribution. Crown gears are essential components that enable the controlled transfer of mechanical energy, allowing for effective operation and performance of various mechanical systems.

crown gear

What are the challenges in designing and manufacturing crown gears?

The design and manufacturing of crown gears come with certain challenges that engineers and manufacturers need to address. Let’s explore the challenges involved in designing and manufacturing crown gears:

  • Complex Tooth Geometry:

Crown gears have a complex tooth geometry compared to other gear types. The curved shape of the teeth requires precise calculations and design considerations to ensure proper meshing and optimal performance. Designing and modeling these intricate tooth profiles can be challenging, requiring advanced software tools and expertise.

  • Manufacturing Tolerances:

Manufacturing crown gears with tight tolerances is crucial to achieve smooth and accurate meshing with other gears. The curved tooth profile and perpendicular orientation require precise machining or gear cutting processes. Maintaining the necessary tolerances throughout the manufacturing process can be challenging and may require specialized equipment or techniques.

  • Noise and Vibration:

Due to the complex tooth geometry and meshing characteristics, crown gears can generate noise and vibration during operation. Ensuring quiet and vibration-free performance is essential, especially in applications where noise reduction is critical. Designing and manufacturing crown gears with appropriate tooth profiles, surface finishes, and gear materials can help mitigate noise and vibration issues.

  • Stress Concentrations:

Crown gears are susceptible to stress concentrations at the tooth root and fillet areas. The high contact stresses occurring during meshing can lead to premature tooth failure or wear. Designing proper fillet radii, optimizing tooth profiles, and selecting suitable materials and heat treatments are important considerations to minimize stress concentrations and enhance gear strength and durability.

  • Heat Treatment and Surface Hardening:

Achieving the desired surface hardness and wear resistance of crown gears can be challenging. Heat treatment processes, such as carburizing or induction hardening, need to be carefully controlled to ensure uniform hardness distribution and avoid distortion. Balancing the gear’s core toughness with the surface hardness is critical to maintain gear integrity and performance.

  • Lubrication and Maintenance:

Crown gears require proper lubrication to reduce friction, wear, and heat generation during operation. Designing gear systems with adequate lubrication mechanisms, such as oil baths or forced lubrication, is crucial. Additionally, considering maintenance requirements, such as accessibility for lubrication and gear inspection, is important to ensure the long-term performance and reliability of crown gears.

In summary, designing and manufacturing crown gears present challenges related to complex tooth geometry, manufacturing tolerances, noise and vibration, stress concentrations, heat treatment, surface hardening, lubrication, and maintenance. Overcoming these challenges requires careful design considerations, precise manufacturing processes, and suitable material selection to ensure the optimal performance, durability, and reliability of crown gears in gear systems.

crown gear

How does a crown gear differ from other types of gears?

A crown gear, also known as a contrate gear or a contrate wheel, has distinct characteristics that set it apart from other types of gears. Let’s explore the key differences between a crown gear and other gears:

  • Tooth Orientation:

One of the primary differences is the tooth orientation. In a crown gear, the teeth are positioned perpendicular to the gear’s face. This is in contrast to other gears, such as spur gears or bevel gears, where the teeth are parallel or at an angle to the gear’s axis. The perpendicular tooth arrangement of a crown gear allows for specific functionalities in mechanical systems.

  • Directional Change:

A significant advantage of crown gears is their ability to change the direction of rotation in a mechanical system. By meshing with other gears, crown gears can redirect rotational motion by 90 degrees. This directional change capability is particularly useful in applications where a change in motion direction is required, such as conveyors, cranes, and other machinery.

  • Meshing with Different Gear Types:

Crown gears can mesh with gears that have parallel axes or bevel gears with intersecting axes. This versatility allows crown gears to work in conjunction with other gear types, enabling torque and rotational motion transfer between them. The perpendicular tooth orientation of crown gears facilitates smooth meshing with these different gear configurations.

  • Force Distribution:

Another distinguishing feature of crown gears is their ability to distribute forces and torques in mechanical systems. By meshing a crown gear with other gears, the load can be spread across a larger contact area. This distribution of forces helps reduce stress and wear on individual gear teeth, promoting smoother operation and improved durability of the gear system.

  • Applications:

Crown gears find applications in various industries due to their unique characteristics. They are commonly used in steering mechanisms, such as rack and pinion systems in automotive applications, where the crown gear meshes with a rack to convert rotational motion into linear motion for precise steering control. Crown gears are also employed in automation and robotics for motion control mechanisms, enabling changes in motion direction and force distribution in robotic arms, gantry systems, and other automated equipment.

In summary, a crown gear differs from other types of gears primarily in its tooth orientation, ability to change motion direction, versatility in meshing with different gear types, and force distribution capabilities. These distinctions make crown gears suitable for specific applications where directional change, force distribution, and precise motion control are required.

China factory 38110-90707 7/39 CZPT Wheel and Pinion Gear for CZPT Ud Cw450 gear boxChina factory 38110-90707 7/39 CZPT Wheel and Pinion Gear for CZPT Ud Cw450 gear box
editor by CX 2023-11-10

Tags

Recent Posts